ATR profiles for different wavelengths in the Kretschmann configuration.

Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilon‐Near‐Zero Organic Thin Films

MAY, 2018

Yeon Ui Lee, Eleonora Garoni, Hanayo Kita, Kenji Kamada, Byung Hoon Woo, Young Chul Jun, Sang Min Chae, Hyo Jung Kim, Kwang Jin Lee, Seokhyun Yoon, Eunyoung Choi, Fabrice Mathevet, Igor Ozerov, Jean Charles Ribierre, Jeong Weon Wu, Anthony D'Aléo
Advanced Optical Materials 6 (14), 1701400 (2018)


Enhanced Kerr nonlinearities are observed in metamaterials such as conducting oxides and doped inorganic semiconductor thin films showing epsilon‐near‐zero (ENZ) response in the infrared region. However, to achieve ENZ in the visible, artificial metamaterials with more complex nanostructures have to be specifically designed. Here, using sodium [5,6‐dichloro‐2‐[ [5,6‐dichloro‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazol‐2‐ylidene]‐propenyl]‐1‐ethyl‐3‐(4‐sulphobutyl)‐benzimidazolium hydroxide] and [2,4‐bis [8‐hydroxy‐1,1,7,7‐tetramethyljulolidin‐9‐yl] squaraine] organic thin films, ENZ responses between 450 and 620 nm are demonstrated. Both nonlinear refractive index and nonlinear absorption coefficient are enhanced by more than two orders of magnitude in the ENZ spectral region. These optical effects in the visible spectral range come from the strongly dispersive permittivity of molecular aggregates resulting from the coupling of excitonic transition dipoles. These findings open the path toward a next generation of high‐performance solution‐processable organic nonlinear optical materials with ENZ properties that can be tuned by molecular engineering.